Ab initio RNA folding.

نویسندگان

  • Tristan Cragnolini
  • Philippe Derreumaux
  • Samuela Pasquali
چکیده

RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of recent advances in ab initio protein folding by the Folding@home project

The Folding@home project harnesses a volunteer distributed computing network to perform ab initio molecular simulations of protein folding. Thanks to engineering innovations like a Graphical Processing Unit (GPU) client for running simulations, Folding@home is able to harness over 6.1 petaFLOPS of processing power, allowing it to simulate longer and more complex protein folding mechanisms than ...

متن کامل

Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.

We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored ...

متن کامل

Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms.

RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, in...

متن کامل

A Probabilistic Graphical Model for Ab Initio Folding

Despite significant progress in recent years, ab initio folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different ...

متن کامل

Dual folding pathways of an / protein from all-atom ab initio folding simulations

Successful ab initio folding of proteins with both -helix and -sheet requires a delicate balance among a variety of forces in the simulation model, which may explain that the successful folding of any / proteins to within experimental error has yet to be reported. Here we demonstrate that it is an achievable goal to fold / proteins with a force field emphasizing the balance between the two majo...

متن کامل

John Symons' Retirement

Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 27 23  شماره 

صفحات  -

تاریخ انتشار 2015